Debate

Invasive Ventilation versus Non-invasive ventilation

Dr Deepak Chawla

For Invasive Ventilation

Dr Deepak Chawla

Argument 1:

You can not escape the "Tube"

Exhibit 1.1: Hidden truth behind trials!

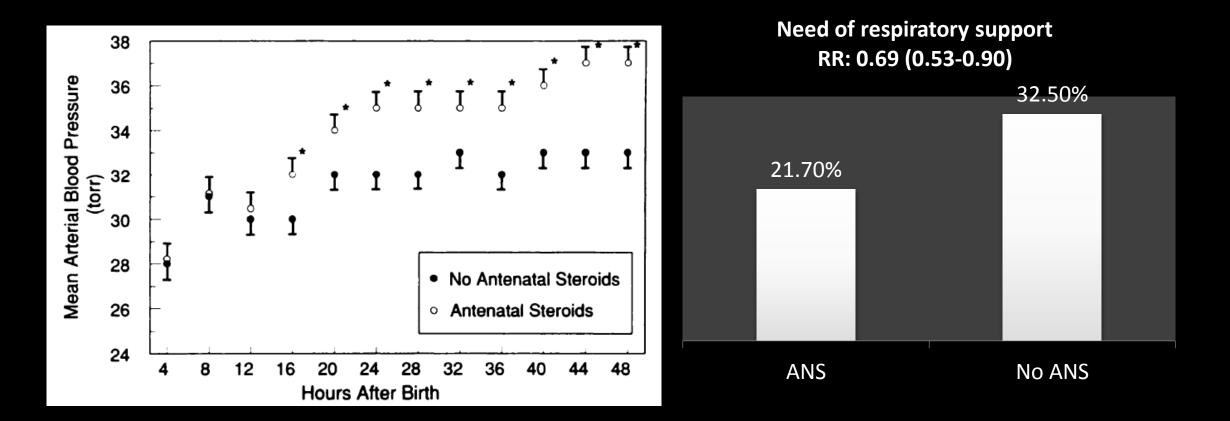
Study	Outcome	
SUPPORT	Survival without need of ventilation at D7	
	Days of ventilation	
COIN	Need of ventilation	
	Need of ventilation	
VON	Days of ventilation	

Exhibit 1.1: Hidden truth behind trials!

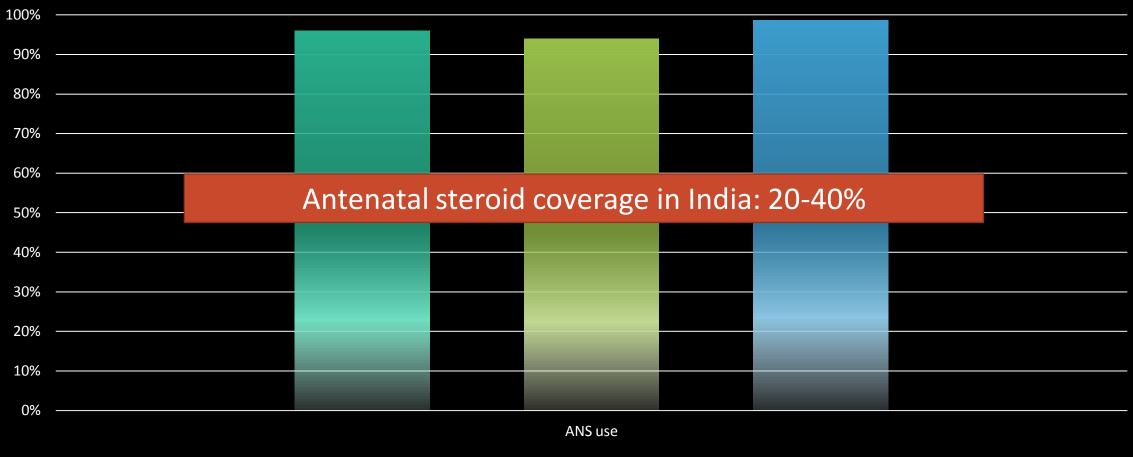
Study	Outcome	NIV group	IV group
SUPPORT	Survival without need of ventilation at D7	55.3%	48.8%
	Days of ventilation	24.8	27.7
COIN	Need of ventilation	59%	100% (by design)
VON	Need of ventilation	52.3-59.3%	95.7%
	Days of ventilation	9.2 to 12.5	7.7

Exhibit 1.2: Morbidities for which IV is needed

- Meconium aspiration syndrome
- Birth asphyxia with poor respiratory drive
- Persistent pulmonary hypertension of newborn
- Prolonged/repeated apnea of prematurity
- Surgical neonates



NNPD 2002-2003, n=145623


Argument 2:

For NIV to work you need steroids!

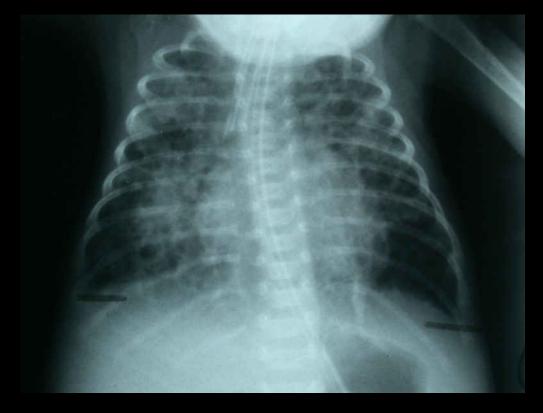
Exhibit 2.1: Effect of ANS

Exhibit 2.2: NIV trial and steroids

Exhibit 2.3: NIV trial and steroids

Outcome	Intervention (n=48698)	Control (n=52007)	RR (95% CI)
Neonatal deaths <7 days	21.9/1000	19.1/1000	1.12 (1.02–1.22)
Neonatal deaths <28 days	27.4/1000	23.9/1000	1.12 (1.02–1.22)
Suspected maternal infection	3%	2%	1.45 (1.33-1.58)

A population-based, multifaceted strategy to implement antenatal corticosteroid treatment versus standard care for the reduction of neonatal mortality due to preterm birth in low-income and middle-income countries: the ACT clusterrandomised trial



Argument 3:

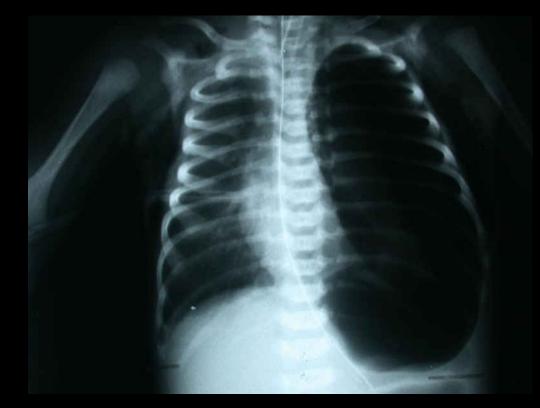

Each has its own set of complications!

Exhibit 3.1: Complications

Invasive

Non-invasive

Exhibit 3.2: Complications

Invasive

- Bronchopulmonary dysplasia
- Pneumonia
- Laryngeal injury
- Tube block/displacement

Non-invasive

- Failure of CPAP
- Pneumonia
- Nasal injury
- CPAP belly
- Decreased venous return

Argument 4:

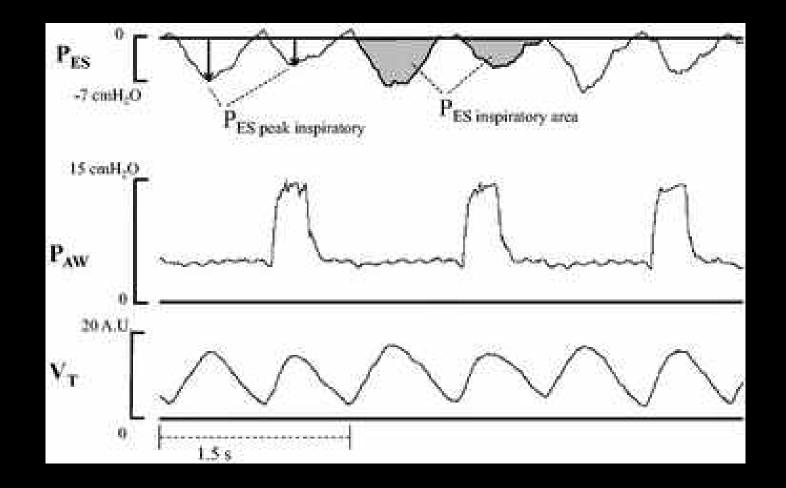
NIV is not less but more intensive!

Exhibit 4.1: More intensive monitoring

- Securing and maintaining proper fixation
- Monitor for CPAP failure
 - 25-40% may fail
- Monitor for side effects
 - CPAP belly
 - Nasal trauma
 - Infection

Evidence from India

Author (Year)	Study subjects	Design and intervention	Result
Tagare et al (2013)	Preterm neonates with respiratory distress within first 6 h of life	RCT Bubble-CPAP versus ventilator CPAP	Higher success rate with B- CPAP (82.5% vs. 63.2%)
Saxena et al (2012)	Preterm neonates with RDS	Observational Early CPAP and selective surfactant	Overall 88% survival CPAP successful in 61%
Yadav et al (2012)	Preterm neonates post-extubation	RCT Bubble-CPAP versus ventilator CPAP	Trend towards reduced extubation failure in BCPAP
Pillai et al (2011)	Preterm neonates with RDS	Observational Early CPAP	Predictors of CPAP failure: Gest<28, PPROM and Pressure X FiO2 <u>></u> 1.28


Evidence from India

Author (Year)	Study subjects	Design and intervention	Result
Tagare et al (2010)	Preterm neonates with respiratory distress within first 6 h of life	RCT Bubble-CPAP versus ventilator CPAP	Comparable success rate
Koti et al (2010)	Preterm neonates with RDS	Observational Bubble CPAP	CPAP successful in 75%
Kishhore et al (2009)	Preterm neonates with RDS	RCT CPAP versus NIPPV	Higher success rate of NIPPV
Urs et al (2009)	Preterm neonates with RDS	Observational Early B-CPAP	Successful in mild to moderate RDS and in neonates with ANS coverage

Argument 5:

You can not synchronize nasal ventilation!

Exhibit 5.1: Synchronization is needed

Exhibit 5.2: No true synchronization for NIPPV

Summary

- 1. Many babies will still need invasive ventilation
- 2. Without antenatal steroids NIV more likely to fail
- 3. Non-invasive ventilation can also cause complications
- 4. Non-invasive ventilation is not less intensive
- 5. Synchronization possible only with invasive ventilation